Exploring the Relationship Between Muscle Tone, Echotexture, and Walking Speed in Chronic Stroke Patients : A Pilot Analysis
Main Article Content
Abstract
Latar Belakang: Spastisitas dan perubahan struktur otot diketahui memengaruhi kemampuan berjalan pasca-stroke. Sementara Skala Ashworth yang Dimodifikasi (MAS) dan Skala Heckmatt yang Dimodifikasi (MHS) umumnya digunakan dalam praktik klinis, hubungannya dengan luaran fungsional seperti kecepatan berjalan masih belum jelas. Tujuan: Studi percontohan ini mengeksplorasi hubungan antara spastisitas, ekotekstur otot, dan kecepatan berjalan pada pasien dengan stroke kronis. Metode: Delapan pasien rawat jalan, 8 – 24 bulan pasca-stroke pertama, dinilai di klinik neurorehabilitasi. Tonus otot diukur menggunakan MAS, ekotekstur otot menggunakan MHS, dan kecepatan berjalan diperoleh dari tes berjalan 6 menit. Data dianalisis menggunakan korelasi peringkat Spearman. Hasil: Kecepatan berjalan rata-rata adalah 0,82 ± 0,21 m/s, skor MAS rata-rata adalah 2,1 ± 0,6, dan skor MHS rata-rata adalah 2,7 ± 0,5. MAS dan MHS menunjukkan korelasi lemah hingga sedang (? = 0,067–0,417), sementara MHS dan kecepatan berjalan menunjukkan hubungan negatif yang sangat lemah (? = –0,126 hingga –0,206). Tidak ada hubungan yang mencapai signifikansi statistik (p > 0,05). Kesimpulan: Meskipun tidak ditemukan korelasi yang signifikan, temuan ini memberikan wawasan awal yang berharga. Penelitian yang lebih besar dan lebih beragam, terutama yang melibatkan pasien stroke subakut dan stratifikasi berdasarkan stadium Brunnstrom, diperlukan untuk memperjelas bagaimana spastisitas dan kualitas otot berkontribusi terhadap luaran mobilitas dalam rehabilitasi stroke.
Kata kunci stroke kronis, tonus otot, ekotekstur, kecepatan berjalan, ultrasonografi
Kata kunci stroke kronis, tonus otot, ekotekstur, kecepatan berjalan, ultrasonografi
Article Details
How to Cite
Ramadanti, S. N., Dharmawan, M. L., Farida Arisanti, Nazir, A., & Deta Tanuwidjaja. (2025). Exploring the Relationship Between Muscle Tone, Echotexture, and Walking Speed in Chronic Stroke Patients : A Pilot Analysis. Indonesian Journal of Physical Medicine and Rehabilitation, 14(2), 215 - 225. https://doi.org/10.36803/indojpmr.v14i2.524
Section
Original Article

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in the Indonesian Journal of Physical Medicine and Rehabilitation (IJPMR) are licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This license allows others to share, copy, distribute, adapt, and build upon the work for any purpose, including commercial use, as long as proper attribution is given to the original authors.

Indonesian Journal of Physical Medicine and Rehabilitation is Full license terms: https://creativecommons.org/licenses/by/4.0/
References
1. Feigin VL, Brainin M, Norrving B, Martins S, Sacco RL, Hacke W, et al. World Stroke Organization (WSO): Global Stroke Fact Sheet 2022. Int J Stroke. 2022;17:18–29.
2. Vidmar T, Goljar Kregar N, Puh U. Reliability of the Modified Ashworth Scale After Stroke for 13 Muscle Groups. Arch Phys Med Rehabil. 2023;104(10):1606–11. [Internet]. doi: 10.1016/j.apmr.2023.04.008.
3. Gal O, Baude M, Deltombe T, Esquenazi A, Gracies JM, Hoskovcova M, et al. Clinical Outcome Assessments for Spasticity: Review, Critique, and Recommendations. Mov Disord. 2025;40(1):22–43.
4. González-Buonomo J, Pham A, Ghuman J, Malik A, Yozbatiran N, Francisco G, et al. Ultrasound assessment of spastic muscles in ambulatory chronic stroke survivors reveals function-dependent changes. J Rehabil Med. 2022;55:jrm00342.
5. Pundik S, McCabe J, Skelly M, Tatsuoka C, Daly JJ. Association of spasticity and motor dysfunction in chronic stroke. Ann Phys Rehabil Med. 2019;62:397–402.
6. Beckwée D, Lefeber N, Bautmans I, Cuypers L, De Keersmaecker E, De Raedt S, et al. Muscle changes after stroke and their impact on recovery: time for a paradigm shift? Top Stroke Rehabil. 2021;28(2):104–11.
7. Su Y, Yuki M, Otsuki M. Prevalence of stroke-related sarcopenia: a systematic review and meta-analysis. J Stroke Cerebrovasc Dis. 2020;29:105092.
8. Azzollini V, Dalise S, Chisari C. How does stroke affect skeletal muscle? State of the art and rehabilitation perspective. Front Neurol. 2021;12:797559.
9. Moreta MC, Fleet A, Reebye R, McKernan G, Berger M, Farag J, et al. Reliability and validity of the Modified Heckmatt Scale in evaluating muscle changes with ultrasound in spasticity. Arch Rehabil Res Clin Transl. 2020;2(4):100071.
10. Perkisas S, Bastijns S, Baudry S, Bauer J, Beaudart C, Beckwée D, et al. Application of ultrasound for muscle assessment in sarcopenia: 2020 SARCUS update. Eur Geriatr Med. 2021;12:45–59.
11. Wijntjes J, Saris C, Doorduin J, Van Alfen N, van Engelen B, Mul K. Improving Heckmatt muscle ultrasound grading scale through Rasch analysis. Neuromuscul Disord. 2024;42:14–21.
12. Monjo H, Fukumoto Y, Asai T, Kubo H, Ohshima K, Tajitsu H, et al. Differences in muscle thickness and echo intensity between stroke survivors and age- and sex-matched healthy older adults. Phys Ther Res. 2020;23:188–94.
13. Thielman G, Yourey L. Ultrasound imaging of upper extremity spastic muscle post-stroke and the correlation with function: a pilot study. NeuroRehabilitation. 2019;45:213–20.
14. He J, Luo A, Yu J, Qian C, Liu D, Hou M, et al. Quantitative assessment of spasticity: a narrative review of novel approaches and technologies. Front Neurol. 2023;14:1121323.
15. Park J, Lee S, Lee J, Lee D. Cut-off score of the modified Ashworth scale corresponding to walking ability and functional mobility in individuals with chronic stroke. Disabil Rehabil. 2023;45(2):289–96.
16. Kim HJ, Lee SY, Jung SH, Cho KH. The effects of gastrocnemius muscle spasticity on gait symmetry and trunk control in chronic stroke patients. Clin Rehabil. 2023;37(6):987–95.
17. Pandyan AD, Johnson GR, Price CI, Curless RH, Barnes MP, Rodgers H. A review of the properties and limitations of the Ashworth and modified Ashworth Scales as measures of spasticity. Arch Phys Med Rehabil. 2023;104(4):778–85.
18. Picelli A, Santamato A, Baricich A, Cisari C, Gandolfi M, Smania N. Ankle and foot spasticity patterns in chronic stroke survivors with abnormal gait. Toxins (Basel). 2020;12(12):790.
19. Li F, Wu Y, Li X. Responsiveness and minimal clinically important difference of Modified Ashworth Scale in patients with stroke. Clin Rehabil. 2019;33(10):1625–34.
20. Boissonnault É, Jeon A, Munin MC. Assessing muscle architecture with ultrasound: implications for spasticity. Eur J Transl Myol. 2024;34(2):12397
21. Müller J, et al. Examination of evaluation indicators for spasticity in stroke patients using ultrasound imaging equipment. J Phys Ther Sci. 2024;36(3):123–30.
22. Tran A, Gao J. Quantitative ultrasound to assess skeletal muscles in post-stroke spasticity. Rehabil J. 2021;[Internet]. https://doi.org/10.1177/1179573521996141
23. Johnson CA, Biswas P, Tapia R, et al. The weak relationship between ankle proprioception and gait speed after stroke: a robotic assessment study. ArXiv preprint. 2024 Feb 16;2402.11110.
24. Fischer M, Vialleron T, et al. Effects of a 12-week moderate-to-high intensity strength training program on gait parameters and their variability of stroke survivors. Brains. 2022;15(4):354.
25. Chambers V, Artemiadis P. Repeated robot-assisted unilateral stiffness perturbations result in significant aftereffects relevant to post-stroke gait rehabilitation. ArXiv preprint. 2022 Mar 1;2203.00727.
26. Munin MC, et al. Ultrasound assessment of spastic muscles in ambulatory chronic stroke survivors reveals function-dependent changes. J Ultrasound Med Biol. 2022;48(5):1234–42. 27. Kim BR, Dadashi F, Liu P, et al. Which brain lesions produce spasticity? An observational study on 45 stroke patients. Cerebrovasc Dis Extra. 2019;9(1):11–23.
28. Yu HY, Zhong FJ, Feng C, et al. Effects of ankle–foot orthoses on gait parameters in post-stroke patients with different Brunnstrom stages of the lower limb: a single-center crossover trial. Eur J Med Res. 2024;29(1):18.
29. Yang J, Park JH, Lee J, et al. Effects of ankle–foot orthoses on gait parameters in post-stroke patients: differences by Brunnstrom stage. Eur J Med Res. 2024;29(1):18.
30. Botter A, Favilla S, Fuoco A, et al. Motor impairment and its influence in gait velocity and asymmetry in community ambulating hemiplegic individuals. J Neuroeng Rehabil. 2021;18(1):8
2. Vidmar T, Goljar Kregar N, Puh U. Reliability of the Modified Ashworth Scale After Stroke for 13 Muscle Groups. Arch Phys Med Rehabil. 2023;104(10):1606–11. [Internet]. doi: 10.1016/j.apmr.2023.04.008.
3. Gal O, Baude M, Deltombe T, Esquenazi A, Gracies JM, Hoskovcova M, et al. Clinical Outcome Assessments for Spasticity: Review, Critique, and Recommendations. Mov Disord. 2025;40(1):22–43.
4. González-Buonomo J, Pham A, Ghuman J, Malik A, Yozbatiran N, Francisco G, et al. Ultrasound assessment of spastic muscles in ambulatory chronic stroke survivors reveals function-dependent changes. J Rehabil Med. 2022;55:jrm00342.
5. Pundik S, McCabe J, Skelly M, Tatsuoka C, Daly JJ. Association of spasticity and motor dysfunction in chronic stroke. Ann Phys Rehabil Med. 2019;62:397–402.
6. Beckwée D, Lefeber N, Bautmans I, Cuypers L, De Keersmaecker E, De Raedt S, et al. Muscle changes after stroke and their impact on recovery: time for a paradigm shift? Top Stroke Rehabil. 2021;28(2):104–11.
7. Su Y, Yuki M, Otsuki M. Prevalence of stroke-related sarcopenia: a systematic review and meta-analysis. J Stroke Cerebrovasc Dis. 2020;29:105092.
8. Azzollini V, Dalise S, Chisari C. How does stroke affect skeletal muscle? State of the art and rehabilitation perspective. Front Neurol. 2021;12:797559.
9. Moreta MC, Fleet A, Reebye R, McKernan G, Berger M, Farag J, et al. Reliability and validity of the Modified Heckmatt Scale in evaluating muscle changes with ultrasound in spasticity. Arch Rehabil Res Clin Transl. 2020;2(4):100071.
10. Perkisas S, Bastijns S, Baudry S, Bauer J, Beaudart C, Beckwée D, et al. Application of ultrasound for muscle assessment in sarcopenia: 2020 SARCUS update. Eur Geriatr Med. 2021;12:45–59.
11. Wijntjes J, Saris C, Doorduin J, Van Alfen N, van Engelen B, Mul K. Improving Heckmatt muscle ultrasound grading scale through Rasch analysis. Neuromuscul Disord. 2024;42:14–21.
12. Monjo H, Fukumoto Y, Asai T, Kubo H, Ohshima K, Tajitsu H, et al. Differences in muscle thickness and echo intensity between stroke survivors and age- and sex-matched healthy older adults. Phys Ther Res. 2020;23:188–94.
13. Thielman G, Yourey L. Ultrasound imaging of upper extremity spastic muscle post-stroke and the correlation with function: a pilot study. NeuroRehabilitation. 2019;45:213–20.
14. He J, Luo A, Yu J, Qian C, Liu D, Hou M, et al. Quantitative assessment of spasticity: a narrative review of novel approaches and technologies. Front Neurol. 2023;14:1121323.
15. Park J, Lee S, Lee J, Lee D. Cut-off score of the modified Ashworth scale corresponding to walking ability and functional mobility in individuals with chronic stroke. Disabil Rehabil. 2023;45(2):289–96.
16. Kim HJ, Lee SY, Jung SH, Cho KH. The effects of gastrocnemius muscle spasticity on gait symmetry and trunk control in chronic stroke patients. Clin Rehabil. 2023;37(6):987–95.
17. Pandyan AD, Johnson GR, Price CI, Curless RH, Barnes MP, Rodgers H. A review of the properties and limitations of the Ashworth and modified Ashworth Scales as measures of spasticity. Arch Phys Med Rehabil. 2023;104(4):778–85.
18. Picelli A, Santamato A, Baricich A, Cisari C, Gandolfi M, Smania N. Ankle and foot spasticity patterns in chronic stroke survivors with abnormal gait. Toxins (Basel). 2020;12(12):790.
19. Li F, Wu Y, Li X. Responsiveness and minimal clinically important difference of Modified Ashworth Scale in patients with stroke. Clin Rehabil. 2019;33(10):1625–34.
20. Boissonnault É, Jeon A, Munin MC. Assessing muscle architecture with ultrasound: implications for spasticity. Eur J Transl Myol. 2024;34(2):12397
21. Müller J, et al. Examination of evaluation indicators for spasticity in stroke patients using ultrasound imaging equipment. J Phys Ther Sci. 2024;36(3):123–30.
22. Tran A, Gao J. Quantitative ultrasound to assess skeletal muscles in post-stroke spasticity. Rehabil J. 2021;[Internet]. https://doi.org/10.1177/1179573521996141
23. Johnson CA, Biswas P, Tapia R, et al. The weak relationship between ankle proprioception and gait speed after stroke: a robotic assessment study. ArXiv preprint. 2024 Feb 16;2402.11110.
24. Fischer M, Vialleron T, et al. Effects of a 12-week moderate-to-high intensity strength training program on gait parameters and their variability of stroke survivors. Brains. 2022;15(4):354.
25. Chambers V, Artemiadis P. Repeated robot-assisted unilateral stiffness perturbations result in significant aftereffects relevant to post-stroke gait rehabilitation. ArXiv preprint. 2022 Mar 1;2203.00727.
26. Munin MC, et al. Ultrasound assessment of spastic muscles in ambulatory chronic stroke survivors reveals function-dependent changes. J Ultrasound Med Biol. 2022;48(5):1234–42. 27. Kim BR, Dadashi F, Liu P, et al. Which brain lesions produce spasticity? An observational study on 45 stroke patients. Cerebrovasc Dis Extra. 2019;9(1):11–23.
28. Yu HY, Zhong FJ, Feng C, et al. Effects of ankle–foot orthoses on gait parameters in post-stroke patients with different Brunnstrom stages of the lower limb: a single-center crossover trial. Eur J Med Res. 2024;29(1):18.
29. Yang J, Park JH, Lee J, et al. Effects of ankle–foot orthoses on gait parameters in post-stroke patients: differences by Brunnstrom stage. Eur J Med Res. 2024;29(1):18.
30. Botter A, Favilla S, Fuoco A, et al. Motor impairment and its influence in gait velocity and asymmetry in community ambulating hemiplegic individuals. J Neuroeng Rehabil. 2021;18(1):8